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Abstract. Scalarization method is an important tool in the study of vector optimization
as corresponding solutions of vector optimization problems can be found by solving scalar
optimization problems. In this paper we introduce a nonlinear scalarization function for
a variable domination structure. Several important properties, such as subadditiveness and
continuity, of this nonlinear scalarization function are established. This nonlinear scalariza-
tion function is applied to study the existence of solutions for generalized quasi-vector equi-
librium problems.
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1. Introduction and Preliminaries

The equilibrium problem is a generalization of classical variational inequal-
ities. This problem contains many important problems as special cases,
including optimization, Nash equilibrium, complementarity, and fixed point
problems, (see [4, 5, 17] and the references cited therein). Recently, there
has been an increasing interest in the study of vector equilibrium problems.
Many results on existence of solutions for vector variational inequalities
and vector equilibrium problems have been established (see [3, 6, 7, 11–14,
16, 17, 20]). These results are derived under assumptions of some kind of
monotonicity and pesudomonotonicity. In these studies, the ordering cone
is assumed to be a fixed, closed and convex cone.

Solution concept with variable domination structures was introduced
by Yu [22]. It is a generalization of the solution concept with the fixed
domination structure in multicriteria decision making problems. On the
other hand, another type of the solution concept with variable domination
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structures was introduced in [6]. Recently, in [8], a nonlinear scalarization
function with two variables was explored.

In this paper, we introduce a scalarization function of vector-valued
mappings under a variable ordering (domination) structure. This new non-
linear scalarization function includes the ones in [8, 10] as special cases.
By using this scalarization function, we establish existence of solutions for
a class of generalized vector quasi-equilibrium problems without any con-
ditions of monotonicity type. It is worth noting that this existence result
includes the classical result obtained in [9] as a special case.

Let E and X be locally convex Hausdorff vector topological spaces, and
Y ⊂E a nonempty subset. Let F :Y →2X be a set-valued map.

DEFINITION 1.1 [1].

(i) F is called upper semi-continuous at y0 ∈Y if, for any neighborhood
N(F(y0)) of F(y0), there exists a neighborhood N(y0) of y0 such
that

∀y ∈N(y0), F (y)⊂N(F(y0));
(ii) F is called upper semi-continuous on Y if F is upper semi-continu-

ous at every y ∈Y ;
(iii) F is called lower semi-continuous at y0 ∈Y if, for any x0 ∈F(y0) and

any neighborhood N(x0) of x0, there exists a neighborhood N(y0) of
y0 such that

∀y ∈N(y0), F (y)∩N(x0) �=∅;
(iv) F is called lower semi-continuous on Y if F is lower semi-continu-

ous at every y ∈Y ;
(v) F is called continuous at y0 ∈Y (respectively, on Y ) if F is both upper

semi-continuous and lower semi-continuous at y0 (respectively, on Y ).

DEFINITION 1.2. The set-valued map F is closed if it graph,

GraphF ={(y, x)∈Y ×X :x ∈F(y)},
is a closed set in Y ×X.

DEFINITION 1.3 [15]. Let f : Y → X be a vector-valued map and C ⊂ X a
closed and convex cone. f is said to be C-quasiconvex if, for any x ∈X, the set

M ={y ∈Y :f (y)∈x −C}
is a convex subset in Y .
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LEMMA 1.1 [23]. Let C be a proper, closed and convex cone in locally con-
vex Hausdorff topological vector space X and int C �= ∅. Its dual cone is
defined by

C∗ ={φ ∈X∗ : 〈φ, y〉�0,∀y ∈C},

where X∗ is the dual space of X. Then

x ∈C ⇐⇒〈φ, x〉�0, ∀φ ∈C∗;
x ∈ int C ⇐⇒〈φ, x〉>0, ∀φ ∈C∗\{0}.

The outline of the paper is as follows. In Section 2, a nonlinear scalar-
ization function is introduced and its properties are discussed. In particular,
lower and upper semi-continuity of the nonlinear scalarization function are
established. In Section 3, the existence of solutions for vector quasi-equilib-
rium problems is obtained and an application is given to vector variational
inequalities.

2. A Nonlinear Scalarization Function

Let X be a locally convex Hausdorff topological vector space. Let C :X→
2X be a set-valued map and for any x ∈X, C(x) a proper, closed and con-
vex cone with int C(x) �=∅. Let e : X →X be a vector-valued map and for
any x ∈ X, e(x) ∈ int C(x). Let X∗ be the dual space of X, equipped with
weakly star topology. Let C∗ :X →2X∗

be defined by, for any x ∈X,

C∗(x)={φ ∈X∗ : 〈φ, y〉�0,∀y ∈C(x)}.

For any given x ∈X, since e(x)∈ int C(x), the set

B∗(x)={φ ∈C∗(x) : 〈φ, e(x)〉=1}

is a weakly star compact base of the cone C∗(x) (see [23]).

DEFINITION 2.1. The nonlinear scalarization function ξ : X × X → R is
defined by

ξ(x, z)= inf{λ∈R : z∈ λe(x)−C(x)}, ∀(x, z)∈X ×X.

REMARK 2.1. (i) Let S be a proper closed convex cone in X with int S �=
∅, and let e∈ int S. Recall the definition of the Gerstewitz function [10],

ξe(z)= inf{t ∈R : z∈ te−S}, z∈X.
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If, for any x ∈ X, C(x) = S and e(x) = e in the Definition 2.1, the ξ(x, z)

reduces to ξe(z).
(ii) Let k0 ∈ int

⋂
x∈X C(x) �=∅. The scalariation function in [8] is defined

as

ξk0(x, z)= inf{t ∈R : z∈ tk0 −C(x)}.
We note that if, for any x ∈ X, e(x) = k0, the function ξ(x, z) reduces
to ξk0(x, z). In the new definition, the assumption int

⋂
x∈X C(x) �= ∅ is

removed.

LEMMA 2.1. [8] For each x ∈X,

X =
⋃

{λe(x)− int C(x) :λ∈R+\{0}}.

LEMMA 2.2. For λ∈R and x ∈X, set Sλ(x)=λe(x)−C(x).

(i) If z∈Sλ(x) holds for some λ∈R, and x ∈X, then

z∈µe(x)− int C(x), for each µ>λ;
moreover,

z∈µe(x)−C(x), for each µ>λ.

(ii) For each x; z∈X, there exists a real number λ∈R such that z /∈Sλ(x).
(iii) Let z∈X. If z /∈Sλ(x) for some λ∈R, and x ∈X, then

z /∈Sµ(x), for each µ<λ.

Proof. The proof of this lemma is similar to that of Lemma 2.2 in [8].

PROPOSITION 2.1. The function ξ :X ×X →R is well defined and

ξ(x, z)=min{λ∈R : z∈λe(x)−C(x)}.

Proof. Using the key lemma, Lemma 2.2, the proof of this proposition is
similar to that of Proposition 2.1 in [8].

PROPOSITION 2.2. For any (x, z)∈X ×X,

ξ(x, z)= max
φ∈B∗(x)

〈φ, z〉
〈φ, e(x)〉 .
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Proof. We show firstly,

ξ(x, z)= sup
φ∈C∗(x)\{0}

〈φ, z〉
〈φ, e(x)〉 .

Since ξ(x, z) = min{λ ∈ R : z ∈ λe(x) − C(x)}, z ∈ ξ(x, z)e(x) − C(x), equiva-
lently,

ξ(x, z)e(x)− z∈C(x).

For any φ ∈ C∗(x)\{0} ⊂ C∗(x), we have 〈φ, ξ(x, z)e(x) − z)〉 � 0, equiva-
lently,

ξ(x, z)〈φ, e(x)〉−〈φ, z〉�0.

Because e(x)∈ intC(x) and φ ∈C∗(x)\{0}, by Lemma 1.1, we have 〈φ, e(x)〉>
0. So ξ(x, z)� 〈φ,z〉

〈φ,e(x)〉 . That is to say,

ξ(x, z)� sup
φ∈C∗(x)\{0}

〈φ, z〉
〈φ, e(x)〉 .

On the other hand, let

λ0 = sup
φ∈C∗(x)\{0}

〈φ, z〉
〈φ, e(x)〉 .

So, for any φ ∈ C∗\{0}, λ0 � 〈φ,z〉
〈φ,e(x)〉 . Since 〈φ, e(x)〉 > 0, 〈φ,λ0e(x) − z〉 � 0.

By Lemma 1.1, λ0e(x)−z∈C(x), i.e. z∈λ0e(x)−C(x). From the definition
of ξ, λ0 � ξ(x, z)=min{λ∈R : z∈λe(x)−C(x)}, i.e.

ξ(x, z)� sup
φ∈C∗(x)\{0}

〈φ, z〉
〈φ, e(x)〉 .

So we have

ξ(x, z)= sup
φ∈C∗(x)\{0}

〈φ, z〉
〈φ, e(x)〉 .

Since B∗(x) is the base of C∗(x), for any x ∈ X,φ ∈ C∗(x)\{0}, there is
λ>0, and ϕ ∈B∗(x) such that φ =λϕ. So for any x ∈X,

〈φ, z〉
〈φ, e(x)〉 = 〈λϕ, z〉

〈λϕ, e(x)〉 = 〈ϕ, z〉
〈ϕ, e(x)〉 .
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So we have

sup
φ∈C∗(x)\{0}

〈φ, z〉
〈φ, e(x)〉 = sup

φ∈B∗(x)

〈φ, z〉
〈φ, e(x)〉 .

i.e.

ξ(x, z)= sup
φ∈B∗(x)

〈φ, z〉
〈φ, e(x)〉 .

Since B∗(x) is weakly star compact, ξ(x, z)=maxφ∈B∗(x)
〈φ,z〉

〈φ,e(x)〉 .

PROPOSITION 2.3. For each r ∈ R and x, z ∈ X, the following statements
are satisfied.

(i) ξ(x, z)<r ⇐⇒ z∈ re(x)− int C(x).
(ii) ξ(x, z)� r ⇐⇒ z∈ re(x)−C(x).

(iii) ξ(x, z)� r ⇐⇒ z /∈ re(x)− int C(x).
(iv) ξ(x, z)>r ⇐⇒ z /∈ re(x)−C(x).
(v) ξ(x, z)= r ⇐⇒z∈ re(x)−∂C(x), where ∂C(x) is the topological bound-

ary of C(x).

Proof. We only prove (i). The proofs for other assertions are similar and
omitted. Suppose ξ(x, z)<r, i.e.,

ξ(x, z)<r⇐⇒ max
φ∈B∗(x)

〈φ, z〉
〈φ, e(x)〉 <r

⇐⇒〈φ, z〉<r〈φ, e(x)〉, ∀φ ∈B∗(x)

⇐⇒〈φ, re(x)− z〉>0, ∀φ ∈B∗(x)

⇐⇒〈φ, re(x)− z〉>0, ∀φ ∈C∗(x)\{0}
⇐⇒ re(x)− z∈ intC(x),

⇐⇒ z∈ re(x)− intC(x).

PROPOSITION 2.4. Let X be a locally convex Hausdorff topological vector
space, and for any given x ∈X,

(i) ξ(x, ·) is positively homogenous;
(ii) ξ(x, ·) is strictly monotone, that is, if z1 ∈ z2+int C(x), then

ξ(x, z2)<ξ(x, z1).
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Proof. (i) Let µ>0. For z∈X, we have

ξ(x,µz)= max
φ∈B∗(x)

〈φ,µz〉
〈φ, e(x)〉

=µ max
φ∈B∗(x)

〈φ, z〉
〈φ, e(x)〉

=µξ(x, z).

(ii) Let z1 ∈ z2+ intC(x). Set r = ξ(x, z1). By Proposition 2.3(v), we have

z2 ∈ z1 − intC(x)⊂ re(x)−C(x)− intC(x)⊂ re(x)− intC(x).

By Proposition 2.3(i), we have

ξ(x, z2)<r = ξ(x, z1).

PROPOSITION 2.5. For any fixed x ∈X, and any z1, z2 ∈X,

(i) ξ(x, z1 + z2)� ξ(x, z1)+ ξ(x, z2);
(ii) ξ(x, z1 − z2)� ξ(x, z1)− ξ(x, z2).

Proof.

(i)

ξ(x, z1 + z2)= max
φ∈B∗(x)

〈φ, z1 + z2〉
〈φ, e(x)〉

� max
φ∈B∗(x)

〈φ, z1〉
〈φ, e(x)〉 + max

φ∈B∗(x)

〈φ, z2〉
〈φ, e(x)〉

= ξ(x, z1)+ ξ(x, z2).

(ii) It follows from (i) that

ξ(x, z1)= ξ(x, z1 − z2 + z2)� ξ(x, z1 − z2)+ ξ(x, z2).

Then, ξ(x, z1)− ξ(x, z2)� ξ(x, z1 − z2), which implies that (ii) holds.

THEOREM 2.1. Let X be a locally convex Hausdorff topological vector
space, and let C :X→2X be a set-valued map such that, for each x ∈X, C(x)

is a proper, closed, convex cone in X with int C(x) �= ∅. And let e : X → X

be the continuous selection of the set-valued map int C(·), i.e. e is continu-
ous and e(x)∈ intC(x), for all x ∈X. Define a set-valued map W :X→2X by
W(x)=X\intC(x), for x ∈X. We have
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(i) If W is upper semi-continuous, then ξ(·, ·) is upper semi-continuous on
X ×X;

(ii) If C is upper semi-continuous, then ξ(·, ·) is lower semi-continuous on
X ×X.

Proof. (i) In order to show ξ(·, ·) is upper semi-continuous, we must
check, for any λ∈R, the set

A :={(x, z)∈X ×X : ξ(x, z)� r}

is closed. Let (xα, zα)∈A and (xα, zα)→ (x0, z0). We have ξ(xα, zα)� r, it is
to say, by Proposition 2.3(iii),

zα /∈ re(xα)− intC(xα).

Namely, re(xα) − zα ∈ X\intC(xα) = W(xα). Since e(·) is continuous on
X, (re(xα) − zα, xα) → (re(x0) − z0, x0). Since W is upper semi-continuous
with closed valued, by Proposition 7 (pp. 110) in [1], W is closed. So
re(x0) − z0 ∈ W(x0). Namely, z0 /∈ re(x0) − intC(x0). By Proposition 2.3(iii),
it is equivalent to ξ(x0, z0) � r. So, A is closed, i.e., ξ(·, ·) is upper semi-
continuous on X ×X.

(ii) In order to show ξ(·, ·) is lower semi-continuous, we must check, for
any λ∈R, the set

B :={(x, z)∈X ×X : ξ(x, z)� r}

is closed. Let (xα, zα)∈B and (xα, zα)→ (x0, z0). We have ξ(xα, zα)� r, it is
to say, by Proposition 2.3(ii),

zα ∈ re(xα)−C(xα).

Since e(·) is continuous on X, (re(xα) − zα, xα) → (re(x0) − z0, x0). Since
C(·) is upper semi-continuous with closed valued, by Proposition 7 (pp.
110) in [1], C is closed. So re(x0)− z0 ∈C(x0). Namely, z0 ∈ re(x0)−C(x0).
By Proposition 2.3 (ii), it is equivalent to ξ(x0, z0)� r. So, B is closed, i.e.,
ξ(·, ·) is lower semi-continuous on X ×X.

REMARK 2.2. (i) If X is a paracompact space, and intC−1(y)={x ∈X,y ∈
intC(x)} is an open set and for each x ∈X, int C(x) �=∅ and C(x) is con-
vex, by the Browder continuous select theorem, int C(·) has a continuous
select e(·).

(ii) If e0 ∈ int
⋂

x∈X C(x), we could let for any x ∈X,e(x)=e0. The func-
tion e is also continuous.
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The following examples are to show that if C(W , respectively) is not
upper semi-continuous, then ξ(·, ·) is not lower semi-continuous (upper
semicontinuous, respectively) under the conditions that all the other con-
ditions are satisfied.

EXAMPLE 2.1. Let X =R2, the 2-dimensional Eulidean space. Let

A=Cone
({

(x1, x2)∈R2 :x1 +x2 =2,
1
2

�x1 � 3
2

})

,

B =Cone
({

(x1, x2)∈R2 :x1 +x2 =2,0�x1 � 3
2

})

,

C =Cone
({

(x1, x2)∈R2 :x1 +x2 =2,
1
2

�x1 �2
})

.

The set-valued map C :X →2X is defined by

C((x1, x2))=






A, if x1 =0;
B, if x1 >0;
C, if x1 <0.

W((x1, x2))=






X\int A, if x1 =0;
X\int B, if x1 >0;
X\int C, if x1 <0.

Let e= (1,1) and for any x = (x1, x2)∈X, e(x)= e.

Note that for any x ∈ X, int C(x) �= Ø and e ∈ intC(x). We still note
that W(·) is upper semi-continuous, so ξ(·, ·) is upper semi-continuous on
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X ×X. But C(·) is not upper semi-continuous. Note that the level set of the
function ξ at 0,

L(ξ,0)={((x1, x2), (z1, z2))∈R2 ×R2 : ξ((x1, x2), (z1, z2))�0}
= ({(x1, x2)∈R2 :x1 =0}× (−A))

∪({(x1, x2)∈R2 :x1 >0}× (−B))

∪({(x1, x2)∈R2 :x1 <0}× (−C)),

is not a closed set. That is to say, ξ(·, ·) is not lower semi-continuous.

EXAMPLE 2.2. Let X =R2, the 2-dimensional Eulidean space. Let

A=Cone
({

(x1, x2)∈R2 :x1 +x2 =2,
1
2

�x1 � 3
2

})

,

B =Cone
({

(x1, x2)∈R2 : x1 +x2 =2,0�x1 �2
})

,

The set-valued map C :X →2X is defined by

C((x1, x2))=
{

B, if x1 =0;
A, if x1 �=0.

W((x1, x2))=
{

X\int B, if x1 =0;
X\int A, if x1 �=0.

Let e= (1,1) and for any x = (x1, x2)∈X, e(x)= e.

Note that for any x ∈X, int C(x) �=Ø and e∈ intC(x). We still note that
C(·) is upper semi-continuous, so ξ(·, ·) is lower semi-continuous on X×X.
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But W(·) is not upper semi-continuous. Note that the strict level set of the
function ξ at 0,

Ls(ξ,0)={((x1, x2), (z1, z2))∈R2 ×R2 : ξ((x1, x2), (z1, z2))<0}
= ({(x1, x2)∈R2 :x1 =0}× (−intB))

∪({(x1, x2)∈R2 :x1 �=0}× (−intA))

is not a open set. That is to say, ξ(·, ·) is not upper semi-continuous.

3. Generalized Quasi-equilibrium Problem

In this section, we apply the nonlinear scalarization function to obtain the
existence of solutions for vector quasi-equilibrium problems.

Let E,Z and X be Hausdorff topological vector spaces. Let C : X → 2X

be a set-valued map such that for every x ∈ X,C(x) is a proper, closed
and convex cone with a nonempty interior int C(x), i.e., for each x ∈
X, (X,C(x)) is an ordered space. Let Y ⊂E and D ⊂Z be nonempty sets.
Let Q :Y →2Y and V :Y →2D be set-valued maps. Let g :E →X be a vec-
tor-valued map. Let f :Y ×D ×Y →X be a vector-valued map.

The following fixed point theorem plays an important tool in the estab-
lishment of the existence of generalized quasi-equilibrium problems.

THEOREM 3.1 (Fan-Glicksber-Kakutani) [1]. Let Y be a nonempty com-
pact subset of a locally convex Hausdorff vector topological space E. If F :
Y →2Y is upper semi-continuous and for any y ∈Y,F (y) is a nonempty, con-
vex and closed subset, then there exists a ȳ ∈Y such that ȳ ∈F(ȳ).

We consider the following generalized quasi-equilibrium problem(GQEP)

Find ȳ ∈Q(ȳ) and z̄∈V (ȳ) such that

f (ȳ, z̄, ȳ)−f (ȳ, z̄, y) /∈ intC(g(ȳ)), ∀y ∈Q(ȳ).

REMARK 3.1. Obviously, the problem (GQEP) in this paper is a general-
ization of the vector equilibrium problems considered in [3].

LEMMA 3.1. If, for each y ∈Y, z∈Z, the mapping f (y, z, ·) :v →f (y, z, v)

is C(g(y))-quasi-convex, then the function v → ξ(g(y), f (y, z, v)) is R+-
quasiconvex.

Proof. For t0 ∈R, set

Lev(t0)={v ∈Y : ξ(g(y), f (y, z, v))� t0}.
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It suffices to show that Lev(t0) is a convex subset in E. Indeed, we suppose
that v1, v2 ∈Lev(t0) and λ∈ [0,1]. Then,

ξ(g(y), f (y, z, v))� t0, i =1,2.

This means that

f (y, z, vi)∈ t0e(g(y))−C(g(y)), i =1,2.

Let

M ={v ∈Y :f (y, z, v)∈ t0e(g(y))−C(g(y))}.
Then v1, v2 ∈M. By the C(g(y))-quasiconvexity of f , we have

λv1 + (1−λ)v2 ∈M.

Therefore

f (y, z, λv1 + (1−λ)v2)∈ t0e(g(y))−C(g(y)),

By Proposition 2.3(ii), we have

λv1 + (1−λ)v2 ∈Lev(t0).

and hence v → ξ(g(y), f (y, z, v)) is R+-quasiconvex.
Next, by using the nonlinear scalarization function we obtain an exis-

tence theorem of (GQEP) without any assumption of monotonicity.

THEOREM 3.2. Let E,Z and X be locally convex Hausdorff topological
vector spaces. Let C : X → 2X be a set-valued map such that for every x
∈ X,C(x) is a proper, closed and convex cone with a nonempty interior
int C(x). Assume that int C(·) has continuous select e(·). Define a set-valued
map W : X → 2X by W(x)=X\intC(x), for x ∈X. Let Y ⊂E and D ⊂Z be
nonempty compact convex sets. Let Q :Y →2Y and V :Y →2D be set-valued
maps. Let g : E → X be a vector-valued map. Let f : Y × D × Y → X be a
vector-valued map. Suppose all the following conditions are satisfied.

(i) Both W and C are upper semi-continuous on X;
(ii) f and g are continuous on Y ×D ×Y and E, respectively;

(iii) For each y ∈Y and z∈D the mapping v →f (y, z, v) is C(g(y))-quasi-
convex;

(iv) V is upper semi-continuous on Y ;
(v) For each y ∈Y,V (y)(Q(y), respectively) is a nonempty closed and con-

vex subset of D(Y , respectively) and
(vi) Q is continuous on E;



A NONLINEAR SCALARIZATION FUNCTION 463

Then, there exist ȳ ∈Q(ȳ) and z̄∈V (ȳ) such that

f (ȳ, z̄, ȳ)−f (ȳ, z̄, y) /∈ int C(g(ȳ)), ∀y ∈Q(ȳ).

Proof. Define a function:

ξ(g(y), f (y, z, v))= inf {t ∈R :f (y, z, v)∈ te(g(y))−C(g(y))} ,

and a set-valued map � :Y ×D →2Y ,

�(y, z)={
u∈Q(y) : ξ(g(y), f (y, z, u))= min

v∈Q(y)
ξ(g(y), f (y, z, v))

}
.

We shall show that

(a) � is upper semi-continuous on Y ×D;
(b) � is closed and convex-valued map.

For those, we observe that

�(y, z)={
u∈Q(y) :−ξ(g(y), f (y, z, u))= max

v∈Q(y)
ξ(g(y), f (y, z, v))

}
.

By Theorem 2.1 and the continuity of g,f , the function ξ is continuous
on Y ×D. So, the assumptions of Proposition 23 of [1] hold and hence �

is upper semi-continuous on Y ×D. Then, (a) holds.
To show (b), let u1, u2 ∈�(y, z) and λ∈ (0,1). Define

r0 = min
v∈Q(y)

ξ(g(y), f (y, z, v)).

Then,

ξ(g(y), f (y, z, ui))= r0, i =1,2.

Since Q(y) is convex, λu1 + (1 − λ)u2 ∈ Q(y). By the assumption (iii) and
Lemma 3.1, the function v → ξ(g(y), f (y, z, v)) is R+-quasiconvex. Then,
the set

M ={(v ∈Y : ξ(g(y), f (y, z, v)� r0}

is convex. Since u1, u2 ∈M,λu1 + (1−λ)u2 ∈M. Then

ξ(g(y), f (y, z, λu1 + (1−λ)u2)� r0.

By the definition of r0, we have

ξ(g(y), f (y, z, λu1 + (1−λ)u2)= r0.
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This implies that λu1 + (1−λ)u2 ∈�(y, z).
Now we define a set-valued map W: Y ×D →2Y×D,

W(y, z)=�(y, z)×V (y), ∀(y, z)∈Y ×D.

Observe that W is convex valued, closed valued and upper semi-contin-
uous. By Fan-Glicksberg-Kakutani theorem, there exists (ȳ, z̄) ∈ W(ȳ, z̄).
Hence,

ȳ ∈Q(ȳ), ξ(g(ȳ), f (ȳ, z̄, ȳ)= min
v∈Q(ȳ)

ξ(g(ȳ), f (ȳ, z̄, v))

and z̄∈V (ȳ). Thus, we have

ξ(g(ȳ), f (ȳ, z̄, v))− ξ(g(ȳ), f (ȳ, z̄, ȳ))�0, ∀v ∈Q(ȳ).

By the Proposition 2.5, we have

ξ(g(ȳ), f (ȳ, z̄, v)−f (ȳ, z̄, ȳ))�0, ∀v ∈Q(ȳ).

By the Proposition 2.3(iii),

f (ȳ, z̄, ȳ)=−f (ȳ, z̄, v) /∈ intC(g(ȳ)), ∀v ∈Q(ȳ).

REMARK 3.2. Theorem 3.2 could be considered as the vectorial gener-
alization of several generalized quasi-equilibrium problems or generalized
quai-variational inequality problems, for example: Theorem 1 in [24], The-
orem 2 in [14].

As an application of Theorem 3.2, consider the following vector varia-
tional inequality (VVI) [1l, 20, 21]:

Find ȳ ∈Y, s.t. 〈F(ȳ), y − ȳ〉 /∈−intC, ∀y ∈Y,

where E and X is a locally convex Hausdorff topological vector space, C

is a closed and convex cone in X,F :E →L(Y,X) is continuous and Y ⊂E

is a nonempty, compact and convex set.
Let

f (y, z, v) = 〈F(y), v〉
g :Y →X, any continuous mapping

C(x) = C,∀x

Q(y) = Y

V (y) = V, a nonempty, closed and convex set

D = Z.
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Then, (GQEP) is reduced to (VVI). It is easy to check that the assumptions
in Theorem 3.2 are satisfied:

(i) C(x) is a constant cone, hence both W and C are upper semi-contin-
uous;

(ii) F is continuous in y and linear in v, hence f is continuous in (y, z, v)

and g is continuous on Y ;
(iii) v →f (y, z, v)=〈F(y), v〉 is linear, so it is C-quasiconvex;
(iv) V (y) is a constant mapping, hence upper semi-continuous;
(v) Q(x)=Y ⊂E is a nonempty, compact and convex set;
(vi) Q(y) is a constant mapping, hence continuous. Thus, (VVI) has solu-

tion.

Note that this is an infinite dimensional space generalization of the result
obtained in [9].

4. Conclusions

In this paper, we introduced a nonlinear scalarization function and estab-
lished its lower semi-continuous and upper semi-continuous properties. We
applied it to the study of vector quasi-equilibrium problems. The existence
of a solution for vector quasi-equilibrium problems was obtained without
any monotonicity condition.
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